A Proof of the Validity of the Application of Woodward-Hoffmann Rules to the Fluxionality of $Fe(\eta^4-C_8H_8)(CO)_2(CNPr^3)$

Michael J. Hails, Brian E. Mann,* and Catriona M. Spencer *Department of Chemistry, The University, Sheffield S3 7HF, U.K.*

Magnetisation transfer measurements have been applied to the ¹³C n.m.r. spectrum of Fe($\tilde{\eta}^4$ -C₈H₈)(CO)₂(CNPrⁱ) to demonstrate specific transfer, completely consistent with the Woodward-Hoffmann mechanism, but inconsistent with the least motion mechanism.

There are currently two theories for the fluxionality of η -
polyenes and η -polyenyls on metals, one based on the motion coupled with carbonyl scrambling. It has been motion coupled with carbonyl scrambling. It has been

Scheme 1

proposed that the observed shifts of π -systems on metals can be described in terms of the Woodward-Hoffmann rules if localized bonding descriptions are used to represent the polyene bonding,' and this approach permits the rationalisation of $Fe(\gamma^4-C_8H_8)(CO)_3$ being highly fluxional² while $[Fe(\eta-C_5H_5)(\eta^2-C_8H_8)(CO)_2]^{\text{+ 3}}$ and $[Fe(\eta-C_5H_5)(\eta^6-C_8H_8)]^{\text{+ 4}}$
are static at room temperature. Subsequently this theory was extended to include the other ligands on the metal, which permitted the explanation of concomitant carbonyl scrambling and metal migration in $Fe(\gamma^4-C_8H_8)(CO)_3$ and the increase in activation energy found in $Fe(\eta^4$ -C₈H₈)(η^4 -C₄H₆)-(CO).5 Although this theory provides an attractive interpretation of experimental observations, the alternative interpretation of the observations based on the least motion of the metal producing $[1,2]$ -shifts coupled with carbonyl scrambling² as observed for $\text{Fe}(\eta^4\text{-}C_4H_6)(CO)_3^6$ could not be dismissed as, prior to this work, the two theories were experimentally indistinguishable.

In order to provide the first direct experimental evidence which differentiates between these two mechanisms, a number of compounds $Fe(\eta^4-C_8H_8)(CO)_2L$, $L = MeNC$, Pr^1NC , Bu^tNC, PhNC, 2,4,6-Me₃C₆H₂NC, and P(OMe)₃, have been synthesised by reacting $Fe(\eta^4-C_8H_8)(CO)_3^7$ with L in MeCN at ca. 21 °C in the presence of Me₃NO.⁸ After chromatography, Fe(η^4 -C₈H₈)(CO)₂L is isolated in better than 32% yield.⁹[†] The low temperature 100.6 MHz ¹³C n.m.r. spectra of these compounds, $L = CNR$, in CD_2Cl_2 -CHFCI₂ showed the presence of a mixture of two isomers, **I** and **11,** which are rapidly interconverting at room temperature. It was not possible to obtain limiting low temperature spectra when $L = P(OMe)_3$. In each case where $L = CNR$, no difference in rate was found between carbonyl exchange, cyclo-octatetraene rotation, and isomer interconversion after allowing for the difference in population of the various sites.

A more detailed mechanistic investigation was performed on $Fe(\eta^4$ -C₈H₈)(CO)₂(CNPrⁱ), using ¹³C magnetisation transfer; this molecule being chosen as at low temperature isomers **1** and **11** are present in approximately equal concentration. The mechanism using the Woodward-Hoffmann rules^{1,5} makes predictions as to the interconversion of isomers and the movement of specific carbon atoms in the cyclo-octatetraene ring, see Scheme **1.** The 100.6 MHz 13C n.m.r.

Figure 1. (a) **A** partial 100.6 **MHz** 13C n.m.r. spectrum *of* **Figure 1.** (a) A partial 100.6 MHz ¹³C n.m.r. spectrum of $Fe(\eta^4-C_8H_8)(CO)_2(CNPr^i)$ in $CD_2Cl_2-CHFCl_8$, 1:1, at -118 °C. In addition to the cyclo-octatetraene signals, there is a doublet at δ 104.9 due to CHFCI₂, a weak doublet at δ 89.5 due to solvent impurity coincident with the signals due to carbons *u'* and *a",* a broad singlet at δ 54.6 due to CD_2Cl_2 , and two signals at δ 49.2 and 48.4 p.p.m. due to the methine carbons of the isopropyl group. **(b)** The partial spectrum **1** *ps* after applying a selective **180'** pulse at 6 *55.5* p.p.m. **A** sideband, *5* **kHz** away perturbed the CHFCI, signal. (c) **A** difference spectrum obtained by subtracting spectrum (b) from that obtained 10 ms after applying a selective 180" pulse at S *55.5* p.p.m.

spectrum at -118 °C is shown in Figure 1(a), where exchange is relatively fast, $k = ca$. 100 s⁻¹. At -150 °C, a limiting low temperature spectrum was obtained, and the assignments

are based on that, and literature data for $Fe(\eta^4-C_8H_8)(CO)_3^2$. Isomer I has cyclo-octatetraene ¹³C signals at δ 86.6, *a*; 61.1, *6;* **127.2,** *c;* and **11 7.9** or **11 8.2** p.p.m., *d;* while isomer I1 has the signals at *6* **88.2, 90.6,** *a',a";* **55.5, 62.3,** *b',b";* **128.8, 129.2,** *c',c";* and **117.9** and/or **118.2** p.p.m., *d',d''.* Using the **DANTE** pulse sequence,¹⁰ a specific 180° pulse was applied to the signal *b'* or *b"* at δ 55.5 p.p.m., t see Figure 1(b). At -118 °C the subsequent transfer of magnetisation was monitored as a function of time. Magnetisation transfer occurred first to the signals at δ 86.6, *a*, and δ 128.2 p.p.m., *c'* or *c'*, and was maximum after *ca.* 10 ms, see Figure l(c) where it is displayed as the difference between this spectrum and that after $1 \mu s$ to emphasise the changes. This observation is completely consistent with Scheme **1** where the inverted magnetisation at carbon *b'* is first transferred to sites *c'* and *a.8* The mechanism involving least motion would transfer magnetisation to *a'* and *c'* first while carbonyl scrambling would transfer it to *b* and *h".* This is inconsistent with experimental observations and both the least motion and carbonyl scrambling mechanisms can be rejected as being the predominant mechanism for this compound. These meaurements provide a powerful

check of mechanism and prove the validity of the Woodward-Hoffmann mechanism.

Received, 18th November 1982; Com. 1316

References

- **1 D.** M. P. Mingos, J. Chem. *SOC.,* Dalton Trans., **1977, 31.**
- 2 F. A. Cotton and D. L. Hunter, *J. Am. Chem. Soc.*, 1976, 98, **1413.**
- **3** A. Cutler, **D.** Ehntholt, W. P. Giering, P. Lennon, S. Raghu, A. Rosan, M. Rosenblum, J. Tancrede, and D. Wells, *J.* Am. Chem. *SOC.,* **1976, 98, 3495.**
- **4** D. **L.** Reger and C. Coleman, J. Organomet. Chem., **1977, 131, 153.**
- **5** J. A. Gibson and B. E. Mann, J. Chem. *SOC.,* Dalton Trans., **1979,** 1021 ; **B.** E. Mann in 'Comprehensive Organometallic Chemistry,' ed. G. Wilkinson, F. G. **A.** Stone, and E. W. Abel, Vol. 3, Chapter 20, p. 89, 'Non-rigidity in Organometallic Chemistry,' Pergamon, New York, **1982.**
- **6** L. Kruczysnki and J. Takats, Inorg. Chem., **1976, 15, 3140.**
- **7** T. A. Manuel and F. G. A. Stone, Proc. Chem. *SOC.,* London, **1959, 90;** J. *Am.* Chem. *SOC.,* **1960, 82, 366.**
- **8 Y.** Shro and E. Hazum, J. Chem. *SOC.,* Chem. Commun., **1975, 829;** D. J. Blumer, K. W. Barrett, and T. L. Brown, J. Organomet. Chem., **1979, 173, 71.**
- 9 A multistep synthesis of $Fe(\eta^4-C_8H_8)(CO)_2CNR$ has been previously described, H. Behrens, M. Moll, W. Popp, N-J. Seibold, E. Sepp, and P. Wiirstl, J. Organomet. Chem., **1980, 192, 389.**
- **10** G. **A.** Morris and R. Freeman, J. Magn. Reson., **1978, 29, 433.**
- **11** W. Strohmeier and H. Hellman, Chem. *Ber.,* **1964, 97, 1877.**

 \ddagger A sideband also perturbed the CHFCl₂ solvent resonance.

*⁵*The assignment of the signal at 6 *55.5* p.p.m. as *6'* is consistent with CNR being a weaker *trans*-influence ligand than CO.¹¹ Assignment of the signal at δ 55.5 p.p.m. to b'' would not produce the observed magnetisation transfer.